23 research outputs found

    Étude du dĂ©balancement dans le mĂ©tabolisme de l'acide docosahexaĂ©noĂŻque chez les porteurs du polymorphisme de l'apolipoprotĂ©ine E [epsilon]4

    Get PDF
    Introduction: La consommation de poissons gras semble diminuer le risque de dĂ©clin cognitif lors du vieillissement. Cet effet serait potentiellement attribuable Ă  deux acides gras omĂ©ga-3 concentrĂ©s dans le poisson: l'acide docosahexaĂ©noĂŻque (DHA) et l'acide eicosapentaĂ©noĂŻque (EPA). Cependant, ce lien n'est pas valide chez les personnes porteuses du gĂ©notype de l'apolipoprotĂ©ine E epsilon 4 (ApoE4), le facteur de risque gĂ©nĂ©tique le plus important pour la maladie d'Alzheimer. Ces donnĂ©es suggĂšrent un dĂ©balancement dans le mĂ©tabolisme du DHA chez les porteurs de l'ApoE4. Objectif: Évaluer si le polymorphisme de l'ApoE4 dĂ©balance le mĂ©tabolisme d'un traceur DHA marquĂ© au carbone 13 ([indice supĂ©rieur 13] C-DHA). MĂ©thodologie: Quarante participants de plus de 50 ans ont Ă©tĂ© recrutĂ©s. De ce nombre, 14 sont des hommes et 26 sont des femmes. Ils ont consommĂ© une dose unique de 50 mg de [indice supĂ©rieur 13] C-DHA afin de suivre son mĂ©tabolisme sur une pĂ©riode de 28 j. L'incorporation plasmatique ainsi que la p-oxydation du [indice supĂ©rieur 13] C-DHA ont Ă©tĂ© suivis Ă  l'aide d'Ă©chantillons de plasma et d'haleine prĂ©levĂ©s avant la prise du [indice supĂ©rieur 13] C-DHA et 1 h, 2 h, 4 h, 6 h, 8 h, 24 h, 7 j, 14 j, 21 j et 28 j post-consommation. RĂ©sultats: 6 participants Ă©taient porteurs de l'ApoE4 et 34 Ă©taient non-porteurs. L'incorporation plasmatique du [indice supĂ©rieur 13] C-DHA Ă©tait 3,7 fois moins grande chez les porteurs de l'ApoE4 2 h post-consommation (p = 0,04) et 1,9 fois moins grande 4 h post-consommation (p = 0,04) comparativement aux non-porteurs de l'ApoE4. La beta-oxydation du [indice supĂ©rieur 13] C-DHA Ă©tait 1,8 fois plus grande chez les porteurs de l'ApoE4 7 j post-consommation (p = 0,05), 2,4 fois plus grande 21 j post-consommation (p = 0,02) et 2,3 fois plus grande 28 j post-consommation comparativement aux non- porteurs. Discussion/conclusion: Ces rĂ©sultats suggĂšrent que les porteurs de l'ApoE4 montrent un dĂ©balancement dans leur mĂ©tabolisme du [indice supĂ©rieur 13] C-DHA. Ceci pourrait modifier l'apport recommandĂ© en DHA chez les porteurs de l'ApoE4 afin que ceux-ci soient protĂ©gĂ©s contre le dĂ©clin cognitif par la consommation d'acides gras omĂ©ga-3

    Débalancement du métabolisme des acides gras polyinsaturés à longues chaßnes chez les porteurs de l'apolipoprotéine E Δ4

    Get PDF
    Les porteurs de l’apolipoprotĂ©ine E Δ4 (APOE4) sont Ă  risque accru de dĂ©velopper un dĂ©clin cognitif et/ou des maladies cardiovasculaires comparativement aux non-porteurs. Ceci serait partiellement attribuable Ă  un dĂ©balancement dans le mĂ©tabolisme de l’acide docosahexaĂ©noĂŻque (DHA), un acide gras (AG) polyinsaturĂ© omĂ©ga-3 qui joue un rĂŽle crucial dans la santĂ© du cerveau et du cƓur. La consommation d’une diĂšte riche en AG saturĂ©s et la prĂ©sence de surpoids pourraient exacerber ce dĂ©balancement puisque ces facteurs modifient l’homĂ©ostasie du DHA. Des donnĂ©es prĂ©liminaires suggĂšrent que la consommation d’un supplĂ©ment Ă  haute dose de DHA, sur le long terme, permettrait de rĂ©tablir l’homĂ©ostasie de cet AG chez les porteurs de l’APOE4. L’objectif de la premiĂšre Ă©tude Ă©tait d’évaluer la rĂ©ponse plasmatique Ă  un supplĂ©ment de DHA chez des participants consommant une diĂšte riche en AG saturĂ©s, et ce, en fonction de l’indice de masse corporelle (IMC) et du statut de porteur de l’APOE4. Cette Ă©tude a dĂ©montrĂ© une interaction gĂ©notype x IMC sur la rĂ©ponse plasmatique de l’acide arachidonique (AA) et du DHA au supplĂ©ment. De plus, les porteurs de l'APOE4 Ă©taient de plus faibles rĂ©pondeurs au supplĂ©ment de DHA comparativement aux non-porteurs, mais seulement chez les participants en surpoids. L’objectif de la seconde Ă©tude Ă©tait d’évaluer si une diĂšte riche en DHA pendant huit mois permet de rĂ©tablir les niveaux de DHA dans le foie de souris porteuses de l’APOE4 et d’évaluer si les transporteurs hĂ©patiques d’AG sont impliquĂ©s dans ce rĂ©tablissement. Les rĂ©sultats ont dĂ©montrĂ© que sous une diĂšte contrĂŽle, les concentrations hĂ©patiques d’AA et de DHA Ă©taient plus Ă©levĂ©es chez les souris APOE4 comparativement aux souris APOE3 et que le transporteur d’AG hĂ©patiques FABP1 est impliquĂ©. Par contre, chez les souris ayant consommĂ© la diĂšte riche en DHA, les niveaux d’AA et de DHA Ă©taient similaires entre les gĂ©notypes. Ceci suggĂšre qu’une supplĂ©mentation Ă  long terme en DHA pourrait rĂ©tablir l’homĂ©ostasie de l’AA et du DHA chez les porteurs de l’APOE4. Puisque le DHA est impliquĂ© dans la santĂ© du cerveau et du cƓur, la consommation de hautes doses de DHA chez les porteurs de l’APOE4 pourrait contribuer Ă  diminuer leur risque de dĂ©velopper un dĂ©clin cognitif et/ou des maladies cardiovasculaires mais cette association devra ĂȘtre Ă©valuĂ©e dans des Ă©tudes ultĂ©rieures

    Fatty Acid Metabolism in Carriers of Apolipoprotein E Epsilon 4 Allele: Is It Contributing to Higher Risk of Cognitive Decline and Coronary Heart Disease?

    Get PDF
    Apolipoprotein E (ApoE) is a protein playing a pivotal role in lipid homeostasis since it regulates cholesterol, triglyceride and phospholipid metabolism in the blood and the brain. APOE gene regulates the expression of this protein and has three different alleles: Δ2, Δ3 and Δ4. Carrying an APOE4 allele is recognised as a genetic risk factor of late-onset Alzheimer’s disease (LOAD) and coronary heart disease (CHD). Consuming fatty fish, rich in long chain omega-3 fatty acids (LC omega-3), seems to be associated with risk reduction of developing LOAD and CHD but this link seems not to hold in APOE4 carriers, at least in LOAD. In CHD trials, APOE4 carriers supplemented with LC omega-3 were categorized as differential responders to the treatment with regards to CHD risk markers. This is potentially because fatty acid metabolism is disturbed in APOE4 carriers compared to the non-carriers. More specifically, homeostasis of LC omega-3 is disrupted in carriers of APOE4 allele and this is potentially because they ÎČ-oxidize more LC omega-3 than the non-carriers. Therefore, there is a potential shift in fatty acid selection for ÎČ-oxidation towards LC omega-3 which are usually highly preserved for incorporation into cell membranes

    Cholesterol metabolism in apolipoprotein E4 mice

    Get PDF
    Carrying at least one apolipoprotein E Δ4 allele (E4+) is the main genetic risk factor for Alzheimer's disease (AD). Epidemiological studies support that consuming fatty fish rich in docosahexaenoic acid (DHA; 22:6ω3) is protective against development of AD. However, this protective effect seems not to hold in E4+. The involvement of APOE genotype on the relationship between DHA intake and cognitive decline could be mediated through cholesterol. Many studies show a link between cholesterol metabolism and AD progression. In this study, we investigated whether cholesterol metabolism is improved in E3+ and E4+ mice consuming a diet rich in DHA. Plasma cholesterol was 36% lower in E4+ mice compared to E3+ mice fed the control diet (P=.02), and in the liver, there was a significant genotype effect where cholesterol levels were 18% lower in E4+ mice than E3+ mice. The low-density lipoprotein receptor was overexpressed in the liver of E4+ mice. Plasma cholesterol levels were 33% lower after the DHA diet (P=.02) in E3+ mice only, and there was a significant diet effect where cholesterol level was 67% lower in the liver of mice fed DHA. Mice fed the DHA diet also had 62% less lipolysis stimulated lipoprotein receptor expression in the liver compared to mice fed the control diet (P<.0001), but there was no genotype effect. These findings suggest that plasma and liver cholesterol homeostasis and the receptors regulating uptake of cholesterol in the liver are modulated differently and independently by APOE allele and DHA intake

    Ageing and apoE change DHA homeostasis: relevance to age-related cognitive decline

    Get PDF
    Epidemiological studies fairly convincingly suggest that higher intakes of fatty fish and n-3 fatty acids are associated with reduced risk of Alzheimer's disease (AD). DHA in plasma is normally positively associated with DHA intake. However, despite being associated with lower fish and DHA intake, unexpectedly, plasma (or brain) DHA is frequently not lower in AD. This review will highlight some metabolic and physiological factors such as ageing and apoE polymorphism that influence DHA homeostasis. Compared with young adults, blood DHA is often slightly but significantly higher in older adults without any age-related cognitive decline. Higher plasma DHA in older adults could be a sign that their fish or DHA intake is higher. However, our supplementation and carbon-13 tracer studies also show that DHA metabolism, e.g. transit through the plasma, apparent retroconversion and ÎČ-oxidation, is altered in healthy older compared with healthy young adults. ApoE4 increases the risk of AD, possibly in part because it too changes DHA homeostasis. Therefore, independent of differences in fish intake, changing DHA homeostasis may tend to obscure the relationship between DHA intake and plasma DHA which, in turn, may contribute to making older adults more susceptible to cognitive decline despite older adults having similar or sometimes higher plasma DHA than in younger adults. In conclusion, recent development of new tools such as isotopically labelled DHA to study DHA metabolism in human subjects highlights some promising avenues to evaluate how and why DHA metabolism changes during ageing and AD

    Plasma incorporation, apparent retroconversion and ÎČ-oxidation of 13C-docosahexaenoic acid in the elderly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Higher fish or higher docosahexaenoic acid (DHA) intake normally correlates positively with higher plasma DHA level, but recent evidence suggests that the positive relationship between intake and plasma levels of DHA is less clear in the elderly.</p> <p>Methods</p> <p>We compared the metabolism of <sup>13</sup>C-DHA in six healthy elderly (mean - 77 y old) and six young adults (mean - 27 y old). All participants were given a single oral dose of 50 mg of uniformly labelled <sup>13</sup>C-DHA. Tracer incorporation into fatty acids of plasma triglycerides, free fatty acids, cholesteryl esters and phospholipids, as well as apparent retroconversion and ÎČ-oxidation of <sup>13</sup>C-DHA were evaluated 4 h, 24 h, 7d and 28d later.</p> <p>Results</p> <p>Plasma incorporation and ÎČ-oxidation of <sup>13</sup>C-DHA reached a maximum within 4 h in both groups, but <sup>13</sup>C-DHA was transiently higher in all plasma lipids of the elderly 4 h to 28d later. At 4 h post-dose, <sup>13</sup>C-DHA ÎČ-oxidation was 1.9 times higher in the elderly, but over 7d, cumulative ÎČ-oxidation of <sup>13</sup>C-DHA was not different in the two groups (35% in the elderly and 38% in the young). Apparent retroconversion of <sup>13</sup>C-DHA was well below 10% of <sup>13</sup>C-DHA recovered in plasma at all time points, and was 2.1 times higher in the elderly 24 h and 7d after tracer intake.</p> <p>Conclusions</p> <p>We conclude that <sup>13</sup>C-DHA metabolism changes significantly during healthy aging. Since DHA is a potentially important molecule in neuro-protection, these changes may be relevant to the higher vulnerability of the elderly to cognitive decline.</p

    Phospholipid class-specific brain enrichment in response to lysophosphatidylcholine docosahexaenoic acid infusion

    Get PDF
    This project was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) [482597] and from the Canadian Institutes of Health Research (CIHR) [497215] to Dr. R.P. Bazinet and by a NSERC studentship to Dr. C.T. Chen.Peer reviewedPostprin

    Plasma n-3 fatty acids in the elderly

    Get PDF
    The elderly reportedly have a significantly higher % of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in plasma and red cell lipids. However, these observations are from a few small studies and the health status of the elderly in these studies is for the most part unclear. Since the elderly are susceptible to cardiovascular and neurological illnesses that seem to be related in part to lower intake of n-3 fatty acids it seems paradoxical that their blood levels of EPA and DHA would be higher than in young adults. We report here plasma fatty acid profiles and their response to supplementation with two types of fish oils from several of our recent studies in the moderately healthy elderly. We define the moderately healthy elderly as those who were in good physical condition, had no cognitive decline and, if present, in whom hypothyroidism, hyperlipidemia and/or hypertension were well-controlled. As shown previously, we confirm the higher % EPA and % total n-3 fatty acids (but not DHA) in fasting plasma and extend these findings to include higher plasma concentrations (mg/L) of n-3 fatty acids as well. The EPA-predominant supplement raised DHA only in the young, whereas the DHA-predominant supplement raised EPA more in the young than in the elderly. The moderately healthy elderly clearly have higher plasma n-3 fatty acids but whether this reflects differences in intake versus aging-related changes in n-3 fatty acid metabolism remains to be elucidated

    Kinetics of 13C-DHA before and during fish-oil supplementation in healthy older individuals

    Get PDF
    Background: Docosahexaenoic acid (DHA) kinetics appear to change with intake, which is an effect that we studied in an older population by using uniformly carbon-13–labeled DHA (13C-DHA). Objective: We evaluated the influence of a fish-oil supplement over 5 mo on the kinetics of 13C-DHA in older persons. Design: Thirty-four healthy, cognitively normal participants (12 men, 22 women) aged between 52 and 90 y were recruited. Two identical kinetic studies were performed, each with the use of a single oral dose of 40 mg 13C-DHA. The first kinetic study was performed before participants started taking a 5-mo supplementation that provided 1.4 g DHA/d plus 1.8 g eicosapentaenoic acid (EPA)/d (baseline); the second study was performed during the final month of supplementation (supplement). In both kinetic studies, blood and breath samples were collected ≀8 h and weekly over 4 wk to analyze 13C enrichment. Results: The time × supplement interaction for 13C-DHA in the plasma was not significant, but there were separate time and supplement effects (P < 0.0001). The area under the curve for plasma 13C-DHA was 60% lower while subjects were taking the supplement than at baseline (P < 0.0001). The uniformly carbon-13–labeled EPA concentration was 2.6 times as high 1 d posttracer while patients were taking the supplement as it was at baseline. The mean (±SEM) plasma 13C-DHA half-life was 4.5 ± 0.4 d at baseline compared with 3.0 ± 0.2 d while taking the supplement (P < 0.0001). Compared with baseline, the mean whole-body half-life was 61% lower while subjects were taking the supplement. The loss of 13C-DHA through ÎČ-oxidation to carbon dioxide labeled with carbon-13 increased from 0.085% of dose/h at baseline to 0.208% of dose/h while subjects were taking the supplement. Conclusions: In older persons, a supplement of 3.2 g EPA + DHA/d increased ÎČ-oxidation of 13C-DHA and shortened the plasma 13C-DHA half-life. Therefore, when circulating concentrations of EPA and DHA are increased, more DHA is available for ÎČ-oxidation. This trial was registered at clinicaltrials.gov as NCT01577004

    Débalancement du métabolisme des acides gras polyinsaturés à longues chaßnes chez les porteurs de l'apolipoprotéine E Δ4

    No full text
    Les porteurs de l’apolipoprotĂ©ine E Δ4 (APOE4) sont Ă  risque accru de dĂ©velopper un dĂ©clin cognitif et/ou des maladies cardiovasculaires comparativement aux non-porteurs. Ceci serait partiellement attribuable Ă  un dĂ©balancement dans le mĂ©tabolisme de l’acide docosahexaĂ©noĂŻque (DHA), un acide gras (AG) polyinsaturĂ© omĂ©ga-3 qui joue un rĂŽle crucial dans la santĂ© du cerveau et du cƓur. La consommation d’une diĂšte riche en AG saturĂ©s et la prĂ©sence de surpoids pourraient exacerber ce dĂ©balancement puisque ces facteurs modifient l’homĂ©ostasie du DHA. Des donnĂ©es prĂ©liminaires suggĂšrent que la consommation d’un supplĂ©ment Ă  haute dose de DHA, sur le long terme, permettrait de rĂ©tablir l’homĂ©ostasie de cet AG chez les porteurs de l’APOE4. L’objectif de la premiĂšre Ă©tude Ă©tait d’évaluer la rĂ©ponse plasmatique Ă  un supplĂ©ment de DHA chez des participants consommant une diĂšte riche en AG saturĂ©s, et ce, en fonction de l’indice de masse corporelle (IMC) et du statut de porteur de l’APOE4. Cette Ă©tude a dĂ©montrĂ© une interaction gĂ©notype x IMC sur la rĂ©ponse plasmatique de l’acide arachidonique (AA) et du DHA au supplĂ©ment. De plus, les porteurs de l'APOE4 Ă©taient de plus faibles rĂ©pondeurs au supplĂ©ment de DHA comparativement aux non-porteurs, mais seulement chez les participants en surpoids. L’objectif de la seconde Ă©tude Ă©tait d’évaluer si une diĂšte riche en DHA pendant huit mois permet de rĂ©tablir les niveaux de DHA dans le foie de souris porteuses de l’APOE4 et d’évaluer si les transporteurs hĂ©patiques d’AG sont impliquĂ©s dans ce rĂ©tablissement. Les rĂ©sultats ont dĂ©montrĂ© que sous une diĂšte contrĂŽle, les concentrations hĂ©patiques d’AA et de DHA Ă©taient plus Ă©levĂ©es chez les souris APOE4 comparativement aux souris APOE3 et que le transporteur d’AG hĂ©patiques FABP1 est impliquĂ©. Par contre, chez les souris ayant consommĂ© la diĂšte riche en DHA, les niveaux d’AA et de DHA Ă©taient similaires entre les gĂ©notypes. Ceci suggĂšre qu’une supplĂ©mentation Ă  long terme en DHA pourrait rĂ©tablir l’homĂ©ostasie de l’AA et du DHA chez les porteurs de l’APOE4. Puisque le DHA est impliquĂ© dans la santĂ© du cerveau et du cƓur, la consommation de hautes doses de DHA chez les porteurs de l’APOE4 pourrait contribuer Ă  diminuer leur risque de dĂ©velopper un dĂ©clin cognitif et/ou des maladies cardiovasculaires mais cette association devra ĂȘtre Ă©valuĂ©e dans des Ă©tudes ultĂ©rieures
    corecore